Electricity and Magnetism, Exam 5, 19/05 2017

Exam drafted by (name first examiner) Maxim S. Pchenitchnikov
Exam reviewed by (name second examiner) Steven Hoekstra
12 questions; with answers

This is a multiple-choice exam. Write your name and student number on the answer sheet. Clearly mark the answer of your choice on the answer sheet. Only a single answer is correct for every question. The score might be corrected for guessing. Use of a (graphical) calculator is allowed. You may make use of the formula sheet (provided separately). The same notation is used as in the book and lectures, i.e. a bold-face \mathbf{A} is a vector, T is a scalar.

Table of correct answers

Question	Correct answer	Test on	Level
$\mathbf{1}$	C	Maxwell's correction	easy
$\mathbf{2}$	B	Ampère-Maxwell's law	moderate
$\mathbf{3}$	D	Maxwell's equations	easy
$\mathbf{4}$	A	Waves	moderate
$\mathbf{5}$	C	Waves	easy
$\mathbf{6}$	D	Intensity of EM wave	moderate
$\mathbf{7}$	A	Properties of EM waves in vacuum	moderate
$\mathbf{8}$	D	Properties of EM waves in vacuum	moderate
$\mathbf{9}$	B	Properties of EM waves in vacuum	easy
$\mathbf{1 0}$	B	Waves	easy
$\mathbf{1 1}$	C	A	Conductivity and displacement current
$\mathbf{1 2}$	difficult		

Question 1. Maxwell introduced the term $\mu_{0} \epsilon_{0} \frac{\partial \mathrm{E}}{\partial t}$ into Ampère's law based on
A. His careful experiments with the charging capacitor
B. Hertz's experiments on the electromagnetic waves
C. An attempt to eliminate inconsistency in the four electric/magnetic equations
D. Faraday's experiments with magnetic currents

Answer C: Maxwell introduced his term to eliminate inconsistency in the four electric/magnetic equations (which of course did not guarantee that this term was correct). Maxwell was not experimenting on the charging capacitor (A); Hertz made his experiments long after Maxwell fixed Ampère's law (B), and Faraday's experiments resulted in the $-\frac{\partial \mathbf{B}}{\partial t}$ term (D).

Question 2. A magnetic field in a certain region of empty space has components $B_{x}=-a y ; B_{y}=0 ; B_{z}=0$, where a is a constant and x, y, z are the coordinates of the particular point where we are evaluating the field. Which component of the electric field is changing in time?
A. E_{x}
B. E_{z}
C. E_{y}
D. None

Answer B: Ampère-Maxwell's law: $\boldsymbol{\nabla} \times \mathbf{B}=\mu_{0} \epsilon_{0} \frac{\partial \mathbf{E}}{\partial t}$ (empty space, so that no currents)
$\boldsymbol{\nabla} \times \mathbf{B}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ -a y & 0 & 0\end{array}\right|=-\frac{\partial}{\partial y}(-a y) \mathbf{k}+\frac{\partial}{\partial z}(-a y) \mathbf{j}=a \mathbf{k}=\mu_{0} \epsilon_{0} \frac{\partial \mathbf{E}}{\partial t}$
i.e. z-component of \mathbf{E}.

Question 3. Which of the Maxwell's equations might be best suited to solve the following practical problem: calculate the magnetic field inside a capacitor which is being charged
A. $\boldsymbol{\nabla} \cdot \mathbf{E}=\frac{1}{\epsilon_{0}} \rho$
B. $\boldsymbol{\nabla} \cdot \mathbf{B}=0$
C. $\boldsymbol{\nabla} \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}$
D. $\boldsymbol{\nabla} \times \mathbf{B}=\mu_{0} \mathbf{J}+\mu_{0} \epsilon_{0} \frac{\partial \mathbf{E}}{\partial t}$

Answer D: we used this equation (in its integral form) in the lecture to solve exactly this problem (Griffiths, p.335)

Question 4. A sinusoidal wave of frequency 500 Hz has a speed of $350 \mathrm{~m} / \mathrm{s}$. How far apart are two points that differ in phase by $\pi / 3$?
A. 0.12 m
B. 0.06 m
C. $2 \pi / 3 \mathrm{~m}$
D. 0.7 m

Answer A.

The wavelength $\lambda=v / f=350 / 500=0.7 \mathrm{~m}$
Phase difference between two adjacent peaks $2 \pi \rightarrow \lambda$.
Phase difference of $\pi / 3 \rightarrow 0.7 /(2 \pi) \cdot \pi / 3=0.12 \mathrm{~m}$
Question 5. Which function below does NOT represent a wave? (A and b are constants with the appropriate units)
A. $f(z, t)=A /\left(b(z-v t)^{2}+1\right)$
B. $f(z, t)=A \sin (k z) \cos (k v t)$
C. $f(z, t)=\frac{A}{b\left(b z^{2}+v t\right)+1}$
D. $f(z, t)=A e^{b(z+v t)^{2}}$

Answer C. For a function to represent a wave, the function must have $z \pm v t$ dependence. In B , a standing wave is given that can be decomposed into the sum of two counterpropagating waves.

Question 6. Below you find the Maxwell stress tensor $\overleftrightarrow{\mathbf{T}}$ for a monochromatic plane wave
$\tilde{\mathbf{E}}(z, t)=\tilde{E}_{0} e^{i(k z-\omega t)} \hat{\mathbf{x}} ; \widetilde{\mathbf{B}}(z, t)=\frac{1}{c} \tilde{E}_{0} e^{i(k z-\omega t)} \hat{\mathbf{y}}$
The elements of the Maxwell stress tensor are given as
$T_{i j} \equiv \epsilon_{0}\left(E_{i} E_{j}-\frac{1}{2} \delta_{i j} E^{2}\right)+\frac{1}{\mu_{0}}\left(B_{i} B_{j}-\frac{1}{2} \delta_{i j} B^{2}\right)$, where $i, j=x, y, z$ and $\delta_{i j}=\left\{\begin{array}{l}1, i=j \\ 0, i \neq j\end{array}\right.$
Which answer is correct?
A. $\overleftrightarrow{\mathbf{T}}=-\epsilon_{0} \tilde{E}_{0}^{2} e^{2 i(k z-\omega t)}\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
B. $\overleftrightarrow{\mathbf{T}}=-\epsilon_{0} \tilde{E}_{0}^{2} e^{2 i(k z-\omega t)}\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$
C. $\overleftrightarrow{\mathbf{T}}=-\epsilon_{0} \tilde{E}_{0}^{2} e^{2 i(k z-\omega t)}\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
D. $\overleftrightarrow{\mathbf{T}}=-\epsilon_{0} \tilde{E}_{0}^{2} e^{2 i(k z-\omega t)}\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$

Answer D. E has only an x component, and \mathbf{B} has only a y component. So all the "off-diagonal" ($i \neq j$) terms are zero. As for the "diagonal" elements:
$T_{x x}=\epsilon_{0}\left[E_{x} E_{x}-\frac{1}{2}\left(E_{x}^{2}\right)\right]+\frac{1}{\mu_{0}}\left[-\frac{1}{2}\left(B_{y}^{2}\right)\right]=\frac{\epsilon_{0}}{2} E_{x}^{2}-\frac{1}{2 \mu_{0}} B_{y}^{2}=\frac{1}{2}\left[\epsilon_{0} E_{x}^{2}-\frac{1}{\mu_{0}} \frac{1}{c^{2}} E_{x}^{2}\right]=\frac{1}{2}\left[\epsilon_{0} E_{x}^{2}-\frac{\epsilon_{0} \mu_{0}}{\mu_{0}} E_{x}^{2}\right]=0$
$T_{y y}=\epsilon_{0}\left[-\frac{1}{2}\left(E_{x}^{2}\right)\right]+\frac{1}{\mu_{0}}\left[B_{y} B_{y}-\frac{1}{2}\left(B_{y}^{2}\right)\right]=-\frac{\epsilon_{0}}{2} E_{x}^{2}+\frac{1}{2 \mu_{0}} B_{y}^{2}=\frac{1}{2}\left[-\epsilon_{0} E_{x}^{2}+\frac{1}{\mu_{0}} \frac{1}{c^{2}} E_{x}^{2}\right]=\frac{1}{2}\left[-\epsilon_{0} E_{x}^{2}+\frac{\epsilon_{0} \mu_{0}}{\mu_{0}} E_{x}^{2}\right]$

$$
=0
$$

$T_{z z}=\epsilon_{0}\left[-\frac{1}{2}\left(E_{x}^{2}\right)\right]+\frac{1}{\mu_{0}}\left[-\frac{1}{2}\left(B_{y}^{2}\right)\right]=-\frac{\epsilon_{0}}{2} E_{x}^{2}-\frac{1}{2 \mu_{0}} B_{y}^{2}=-\frac{1}{2}\left[\epsilon_{0} \tilde{E}_{0}^{2}+\frac{1}{\mu_{0}} \frac{1}{c^{2}} \tilde{E}_{0}^{2}\right]=-\frac{1}{2}\left[\epsilon_{0} E_{x}^{2}+\frac{\epsilon_{0} \mu_{0}}{\mu_{0}} E_{x}^{2}\right]$

$$
=-\epsilon_{0} E_{x}^{2}=-\epsilon_{0} \tilde{E}_{0}^{2} e^{2 i(k z-\omega t)}
$$

$\overleftrightarrow{\mathbf{T}}=-\epsilon_{0} \tilde{E}_{0}^{2} e^{2 i(k z-\omega t)}\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$
NB: This is Problem 9.13 from Griffiths which was assigned for homework.
Question 7. An airplane flying at a distance of 10 km from a radio transmitter receives a signal of intensity $10 \mu \mathrm{~W} / \mathrm{m}^{2}$. What is the amplitude of the electric field at the airplane due to this signal?
A. $\cong 87 \mathrm{mV} / \mathrm{m}$
B. $\cong 750 \mathrm{mV} / \mathrm{m}$
C. $\cong 180 \mathrm{mV} / \mathrm{m}$
D. $\cong 20 \mathrm{mV} / \mathrm{m}$

Answer A. Intensity $I \equiv\langle S\rangle=\frac{1}{\mu_{0}}\langle E B\rangle=\frac{1}{c \mu_{0}}\langle E E\rangle=\frac{1}{2} c \epsilon_{0} E_{0}^{2} ; E_{0}=\sqrt{\frac{2 I}{c \epsilon_{0}}}=\sqrt{\frac{2 \cdot 10^{-5}}{3 \cdot 10^{8} \cdot 8.85 \cdot 10^{-12}}} \cong 0.087 \mathrm{~V} / \mathrm{m}=$ $87 \mathrm{mV} / \mathrm{m}$

Question 8. Students were asked to describe all properties of the plain monochromatic electromagnetic wave in vacuum. One student wrote
$\tilde{\mathbf{E}}(\mathbf{r}, t)=\tilde{E}_{0} e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)} \widehat{\mathbf{n}} ; \widetilde{\mathbf{B}}(\mathbf{r}, t)=\frac{1}{c}(\hat{\mathbf{k}} \times \tilde{\mathbf{E}})$
where $\widetilde{\mathbf{E}}(\mathbf{r}, t)$ and $\widetilde{\mathbf{B}}(\mathbf{r}, t)$ are electric and magnetic fields, respectively, $\hat{\mathbf{k}}$ is the unit vector toward the propagation direction, and the rest of notations is standard (i.e. ω is angular frequency etc).
What does the student miss?
A. Electromagnetic waves are transverse
B. Electric and magnetic fields oscillate in phase
C. Electromagnetic wave is monochromatic
D. Nothing; all properties are listed

Answer D. A and B are taken care of by the cross-product, C is taken care of by an exponent in the electric field; the scaling between E and B and propagation speed are taken care by $1 / c$ before the cross-product. All these were discussed in the lecture.

Question 9. Amplitudes of the electric and magnetic fields of a plain monochromatic wave in vacuum are given as $E_{0}=1 \mathrm{kV} / \mathrm{m}$ and $B_{0}=1 \mathrm{mT}$, respectively. Find the energy density u of the given electromagnetic wave.
A. $u \cong 8 \cdot 10^{-4} J$
B. This in not a plain monochromatic wave
C. $u \cong 8.85 \cdot 10^{-6} \mathrm{~J}$
D. $u \cong 796 \cdot 10^{-6} \mathrm{~J}$

Answer B.

For a plain monochromatic wave, $B_{0}=E_{0} / c$, i.e. for the given electric field, the magnetic field amplitude should be $B_{0}=1000 /\left(3 \cdot 10^{8}\right) \neq 0.001 \mathrm{~T}$.
Alternatively, if you calculate contributions of electric and magnetic fileds into the total energy, you notice that these two are VERY different while we know that for a plain monochromatic wave in vacuum they must be identical.

Question 10. The magnetic vector of a plane electromagnetic wave is described as follows: $\mathbf{B}(\mathbf{r}, t)=B_{0} \cos \left[\left(10\right.\right.$ meter $\left.\left.^{-1}\right) y+\left(3 \cdot 10^{9} s^{-1}\right) t\right] \hat{\mathbf{z}}$
In which direction does this wave propagate?
A. $\hat{\mathbf{y}}$
B. $-\hat{\mathbf{y}}$
C. $\hat{\mathbf{x}}$
D. $-\hat{\mathbf{x}}$

Answer B. A positive sign between the y and t terms in the argument of the cosine function means that the direction of propagation is -y .

Question 11. Four following functions are solutions of the wave equation:
$f_{1}(x, t)=2 \sin [2 x-t]$
$f_{2}(x, t)=4 \sin [x-0.8 t]$
$f_{3}(x, t)=4 \cos [x-t]$
$f_{4}(x, t)=-5 \cos [1.25 x-t]$
Which of these waves has the largest propagation speed?
A. f_{1}
B. f_{2}
C. f_{3}
D. f_{4}

Answer C. $v=\frac{\omega}{k} ; v_{1}=0.5, v_{2}=0.8, v_{3}=1, v_{4}=0.8$

Question 12. Consider a parallel-plate capacitor immersed in sea water and driven by a voltage $V=V_{0} \cos (2 \pi \nu t)$. Sea water has permittivity $\epsilon=81 \epsilon_{0}$, permeability $\mu=\mu_{0}$, and resistivity $\rho=0.23 \Omega \cdot m$ at the driving frequency $v=4 \cdot 10^{8} \mathrm{~Hz}$.
What is the ratio of the amplitudes of conduction current to displacement current?
A. $(2 \pi v \epsilon \rho)^{-1}$
B. $\frac{\cos (2 \pi \nu t)}{2 \pi}$
C. $\tan (2 \pi \nu t)$
D. $\frac{\cos (2 \pi v \mathrm{t})}{2 \pi v \epsilon \rho}$

Answer A. Conduction current $J_{c}=\sigma E=\frac{1}{\rho} E=\frac{1}{\rho} \frac{V}{d}=\frac{1}{\rho d} V_{0} \cos (2 \pi \nu \mathrm{t})$
Displacement current: $J_{d}=\frac{\partial D}{\partial t}=\frac{\partial}{\partial t}(\epsilon E)=\epsilon \frac{\partial}{\partial t}\left[\frac{V_{0} \cos (2 \pi v \mathrm{t})}{d}\right]=\frac{\epsilon}{d} 2 \pi \nu V_{0}(-\sin (2 \pi \nu \mathrm{t}))$
Ratio of their amplitudes: $\frac{A_{c}}{A_{d}}=\frac{V_{0}}{\rho d} \frac{d}{2 \pi v \epsilon V_{0}}=\frac{1}{2 \pi v \epsilon \rho}=(2 \pi v \epsilon \rho)^{-1}$
Griffiths, Problem 7.40

